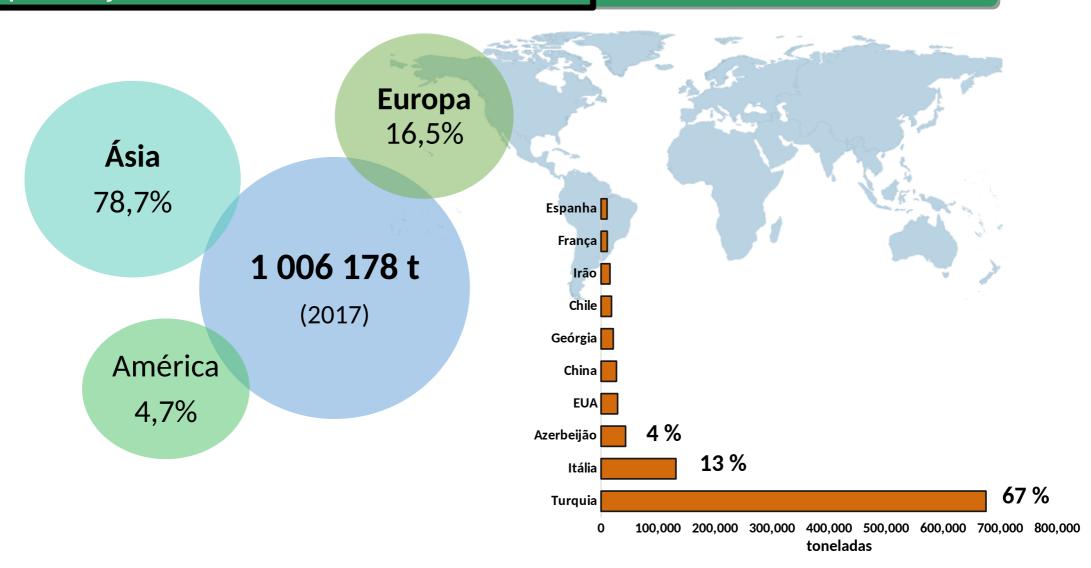
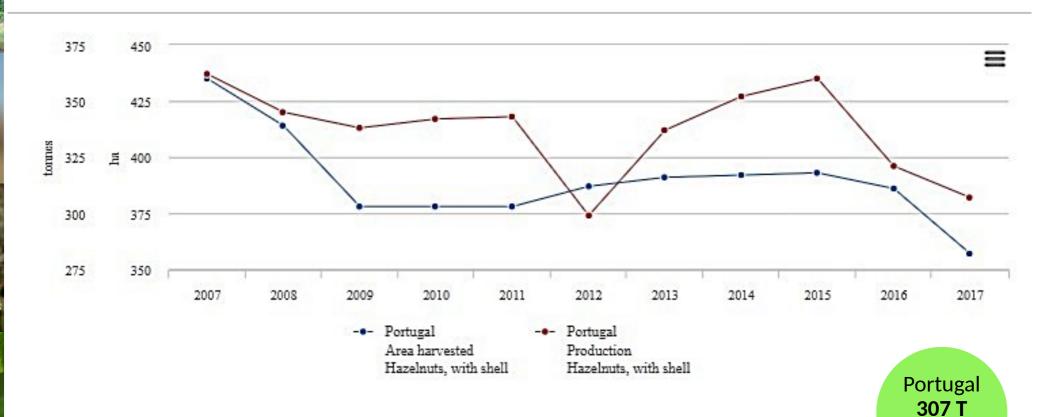


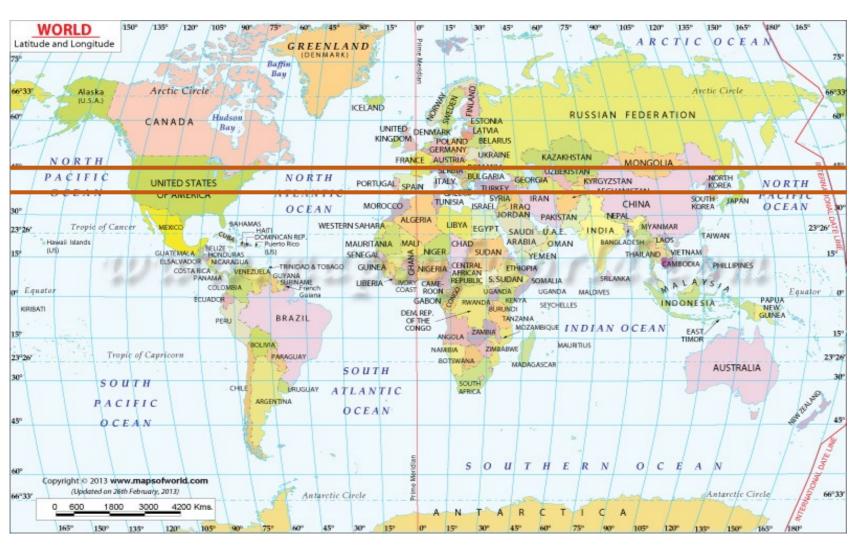
EFEITO DA APLICAÇÃO DE COMPOSTOS EM PRÉ-COLHEITA NA QUALIDADE E PRODUTIVIDADE DA AVELÃ


Sandra Cabo, Alfredo Aires, Alice Vilela, Núria Pascual-Seva, Ana Paula Silva & Berta Gonçalves

scabo@utad.pt


| Produção mundial

FAO. 2019. Agricultural Production. Crops Primary - Hazelnut. Food and Agriculture Organization of the United Nations


- Beira Litoral, Trás-os-Montes e Beira Interior.
- A avelã produzida em Portugal não é suficiente para satisfazer a procura.

FAO. 2019. Agricultural Production. Crops Primary – Hazelnut. Food and Agriculture Organization of the United Nations

(2017)

I | Condições edafo-climáticas

45° N 40° N

- Temperatura
- Precipitação
- Humidade do ar
- Vento
- Luz

| | Qualidade

 Qualidade é uma combinação de características, atributos e propriedades que levam à satisfação do consumidor.



Alterações climáticas

Temperatura global

↓ Disponibilidade de água

Impactos na agricultura

(Črepinšek et al., 2012; Ustaoğlu, 2012; Ustaoğlu and Karaca, 2014)

| Compostos em pré-colheita

 Vários compostos aplicados em pré-colheita demonstraram ser uma boa estratégia de mitigação face ao stresse estival

Caulino

- Mineral de argila quimicamente inerte
- Tem sido usado para mitigar efeitos do stress estival, hídrico e salino (macieiras, pistachio, tomate, videira, oliveira, aveleiras)

(Glenn, 2009; Azizi, Hokmabadi, Piri, e Rabie, 2013; Boari, Cucci, Donadio, Schiattone, & Cantore, 2014; Brillante et al., 2016; Brito et al., 2018, Cabo et al., 2019)

Bioestimulante

- ✓ Bioestimulante natural á base de algas (Ascophyllum nodosum)
- ✓ Estudos demonstraram que o uso de bioestimulantes aumenta a tolerância à seca através do aumento de mecanismos defensivos antioxidantes

(Elansary et al., 2017; Petrozza et al., 2014)

II | Objetivo

 Avaliar o efeito do caulino e de um bioestimulante à base de Ascophyllum nodosum na produção e qualidade da avelã

Propriedades Biométricas

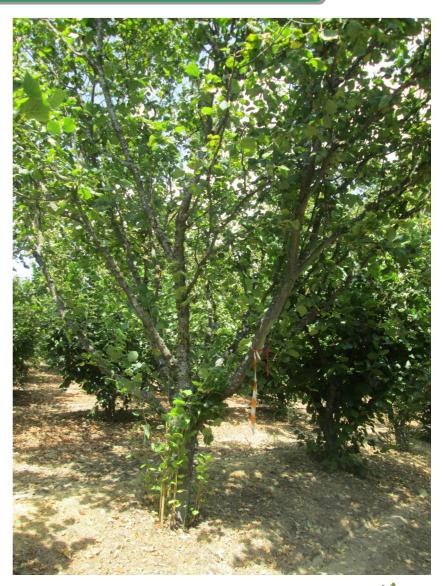
- Massa
- Comprimento
 - Espessura
 - ✓ Largura
 - ✓ Volume
- Rendimento

(Adaptados dos descritores UPOV para avelã)

Análise Sensorial

- Aparência
 - Aroma
 - ✓ Gosto
 - Textura

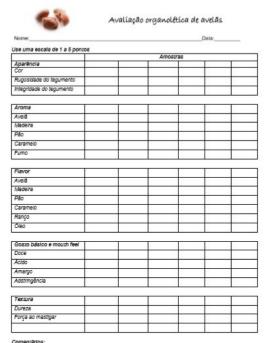
(Adaptados de Donno et al., 2013)

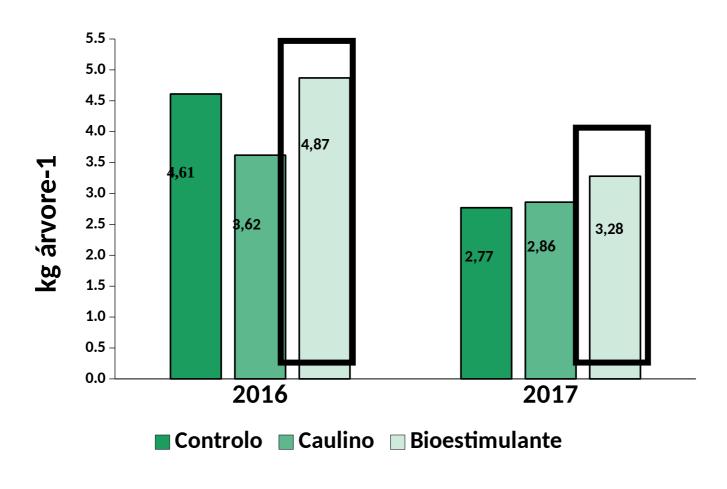


III | Metodologia

- ENSAIO DE CAMPO
 - ✓ Pomar instalado em Moimenta da Beira, Viseu
 - ✓ 2016 e 2017
 - ✓ Compasso 4 x 5 m
 - ✓ Cultivar: Grada de Viseu

III | Metodologia


- TRATAMENTOS EM PRÉ-COLHEITA
 - ✓ Caulino 4%
 - ✓ Bioestimulante 0,15 %

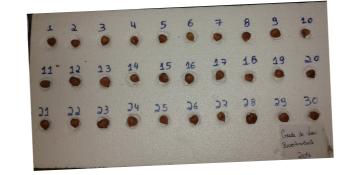

- PARÂMETROS BIOMÉTRICOS E ANÁLISE SENSORIAL
 - ✓ Painel de provadores da UTAD✓ 35 -50 anos
 - ✓ Com experiência em análise sensorial

PRODUTIVIDADE

Ano (A) ***
Tratamento(T) n.s.
A x T n.s.

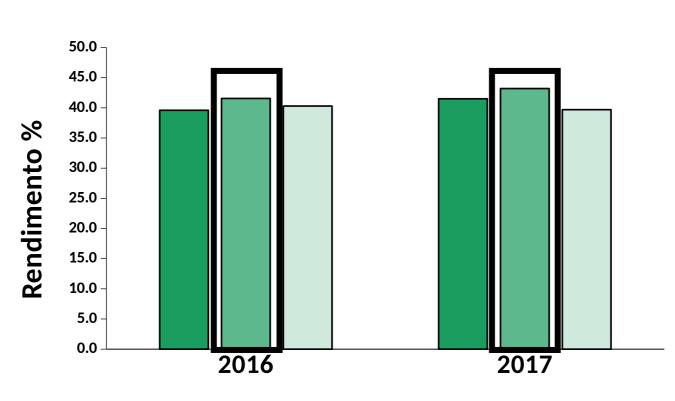
BIOMETRIA FRUTO

Ano	Tratamento	Massa (g)	Comprimento (mm)	Largura (mm)	Espessura (mm)	Volume (mL)	IR
2016	Controlo	2,83 ± 0,50 a	19,68 ± 1,39 a	20,16 ± 1,19 a	17,65 ± 1,17 a	$3,34 \pm 0,76$	$0,98 \pm 0,05$
	Caulino	3,43 ± 0,47 b	20,76 ± 1,20 b	21,77 ± 1,18 b	18,92 ± 1,14 b	3,86 ± 0,62	0.95 ± 0.04
	Bioestimulante	2,78 ± 0,47 a	19,35 ± 1,32 a	19,65 ± 1,63 a	17,52 ± 1,17 a	$3,66 \pm 0,80$	$0,99 \pm 0,06$
	Р	* * *	* *	* * *	* * *	n.s.	n.s.
2017	Controlo	2,62 ± 0,32 a	18,84 ± 1,02 a	19,81 ± 1,19 a	17,31 ± 1,18 a	2,70 ± 0,54 a	$0,95 \pm 0,04$
	Caulino	3,19 ± 0,37 b	20,08 ± 1,06 b	20,88 ± 1,04 b	18,20 ± 0,86 b	3,48 ± 0,59 b	$0,96 \pm 0,05$
	Bioestimulante	2,85 ± 0,39 a	19,59 ± 1,02 b	20,6/ ± 1,00 b	1/,66 ± 1,1/ ab	$3,32 \pm 0,48$ b	$0,94 \pm 0,04$
	P	+++					n.s.
	Ano (A)	11.5.	₩	11.5.	11.5.	* * *	n.s.
	Tratamento (T)	***	***	***	***	***	n.s.
	AxT	n.s.	n.s.	**	n.s.	n.s.	n.s.



BIOMETRIA MIOLO

Ano	Tratamento	Massa (g)	Comprimento (mm)	Largura (mm)	Espessura (mm)	Volume (mL)	IR
	Controlo	1,12 ± 0,25 a	14,16 ± 1,13 a	12,94 ± 1,67 a	10,95 ± 1,67 a	1,36 ± 0,42	1,11. ± 0,16
2016	Caulino	1,42 ± 0,23 b	15,29 ± 0,95 b	14,47 ± 1,61 b	12,38 ± 1,29 b	1,64 ± 0,34	1,07 ± 0,12
	Bioestimulante	1,12 ± 0,21 a	14,35 ± 1,06 a	12,98 ± 1,32 a	11,29 ± 1,01 a	$1,28 \pm 0,36$	1,11 ± 0,11
	Р	* * *	* *	* * *	* * *	n.s.	n.s.
	Controlo	1,08 ± 0,17 a	13,57 ± 0,81 a	13,24 ± 1,40 a	11,39 ± 1,15	1,16 ± 0,37 a	1,04 ± 0,14
2017	Caulino	1,37 ± 0,20 b	14,57 ± 0,90 b	14,20 ± 1,14 b	$12,60 \pm 0,84$	1,60 ± 0,50 b	1,03 ±0,11
	Bioestimulante	1,14 ± 0,22 a	14,26 ± 0,94 b	12,78 ± 1,47 a	11,19 ± 1,35	1,18 ± 0,39 a	1,13 ± 0,13
	Р	1-1-1		i i	n.s.	**	n.s.
	Ano (A)	of of	n.s.	# # <u></u>	n.s.	n.s.	n.s.
	Tratamento (T)	***	n.s.	***	n.s.	***	n.s.
	AxT	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.



BIOMETRIA : RENDIMENTO

Rendimento = Massa miolo X 100

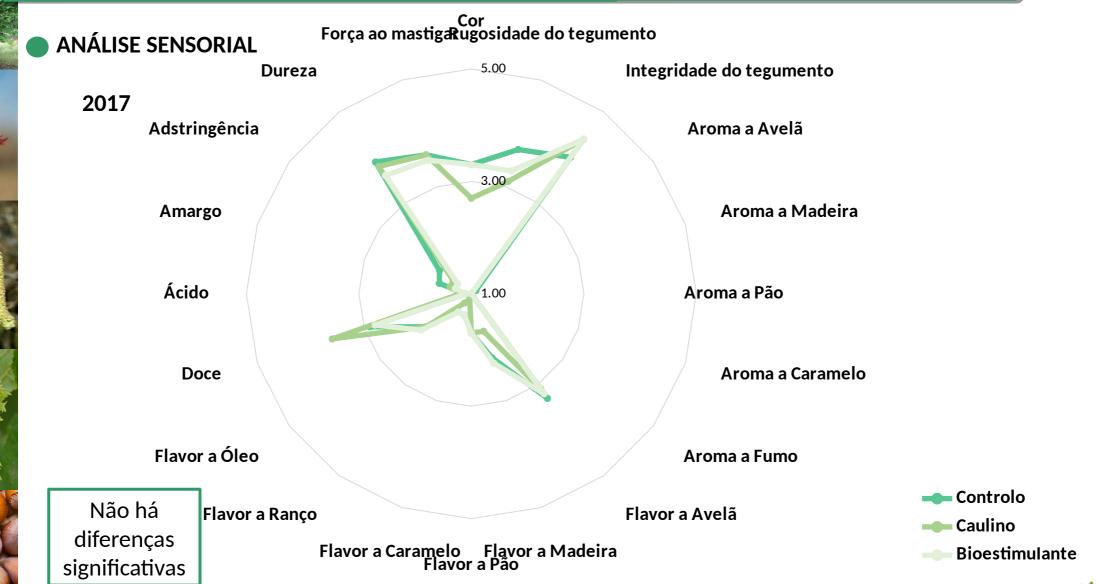
Massa fruto

Ano (A) n.s.
Tratamento(T) *
A x T n.s.

ANÁLISE SENSORIAL

Cor Força ao mastigar Rugosidade do tegumento 2016

5.00 Dureza Adstringência Amargo


Só houve diferenças significativas no gosto amargo (Controlo + amargo)

Aroma a Avelã Aroma a Madeira Ácido 0.00 Aroma a Pão **Aroma a Caramelo** Doce **Control** Flavor a Óleo Aroma a Fumo Caulino **Bioestimulante** Flavor a Avelã Flavor a Ranço

Integridade do tegumento

Flavor a Caramelo Flavor a Madeira Flavor a Pão

V | Conclusão

 Para além de atenuar os efeitos do stresse estival, os compostos, em especial o Caulino influenciaram positivamente a qualidade da avelã, sem afetar os atributos organoléticos.

VI | Agradecimentos

Obrigado!

"The author acknowledge the financial support provided by the FCT-Portuguese Foundation for Science and Technology (PD/BD/113615/2015), under the Doctoral Programme "Agricultural Production Chains – from fork to farm" (PD/00122/2012)". The authors also acknowledge the financial support provided by National Funds from FCT, under the project UID/AGR/04033/2019. The authors acknowledge the financial support of INTERACT project-"Integrative Research in Environment, Agro-Chains and Technology", no. NORTE-01-0145-FEDER-000017, in its line of research entitled ISAC, co-financed by the European Regional Development Fund (ERDF) through NORTE 2020 (North Regional Operational Program 2014/2020).

Sr .Francisco Oliva Teles

